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ABSTRACT

We present a method to separate speech signals from noisy environ-
ments in the embedding space of a neural audio codec. We introduce
a new training procedure that allows our model to produce structured
encodings of audio waveforms given by embedding vectors, where
one part of the embedding vector represents the speech signal, and the
rest represent the environment. We achieve this by partitioning the
embeddings of different input waveforms and training the model to
faithfully reconstruct audio from mixed partitions, thereby ensuring
each partition encodes a separate audio attribute. As use cases, we
demonstrate the separation of speech from background noise or from
reverberation characteristics. Our method also allows for targeted
adjustments of the audio output characteristics.

Index Terms— Disentangled representations, audio compres-
sion, speech enhancement

1. INTRODUCTION

Recent progress in generative models of audio have allowed for the
development of neural codecs [1, 2, 3, 4] that are competitive with tra-
ditional codecs. However, while traditional codecs such as Opus [5]
cascade blocks with specific roles (e.g., voice activity detection, noise
shaping), neural codecs typically stack learned representations that
are not easily interpretable. This can be detrimental to downstream
tasks, such as audio event detection, and selective transmission of
parts of the signal — such tasks can potentially benefit from disen-
tangled representations in the compressed domain, where different
attributes of the signal are represented separately.

In this work, we train a neural audio codec based on Sound-
Stream [4] to represent audio signals in a structured way in the
compressed domain. The neural network maps input audio into
an embedding space, which we split into partitions that are each to
capture a different attribute of the input audio. We then use targeted
augmentations of the data as well as a custom loss function to in-
troduce a strong inductive bias in the model to specifically allocate
each partition to a given attribute. The compressed representations
can then be tailored to make best use of the available bit rate, by
prioritizing certain types of content over others, or only transmitting
the desired part of the signal, such as the clean speech content.

We demonstrate two different types of disentangling tasks: The
first is separating speech from background noise. The noise signal
is an additive component that varies on similar time scales as speech
changes. But in contrast to conventional source separation and speech
enhancement [6, 7, 8], the separation happens in the embedding
space. The second is disentangling speech from the reverberation
characteristics of the recording environment. Here, the reverberation
signal cannot be simply subtracted from the original signal in the time
domain, and is instead modeled as a convolution with a time-invariant
room impulse response that spans an extended period of time. An

important property we exploit in our method is that the reverberation
characteristics typically change more slowly than the speech signal.
For both cases, we demonstrate the separation of speech from the
environment in the embedding space, and how this disentanglement
enables fine-grained control over the synthesized output audio.

A standard approach for disentangling attributes relies on learning
a factorized latent space of a generative model [9], e.g., in the bot-
tleneck of an autoencoder. Several works have used an autoencoder
with a classifier that tries to predict an attribute from the embeddings,
while the encoder is trained to fool the classifier by generating em-
beddings that are invariant under a change in this attribute. This
has been applied to disentanglement of image features [10], sensor
anonymization [11], voice conversion [12, 13] and music transla-
tion [14]. This idea has also been proposed for disentangling multiple
speech attributes by chaining several autoencoders trained in this
fashion [15]. However, this adversarial training adds complexity and
potential instability, and the necessary labels are difficult to obtain
in the audio domain. Here, we instead rely on a suitable choice of
input and target data and training objectives to get sufficient inductive
biases, which are necessary for disentanglement [16].

To avoid issues of adversarial training, some works rely on con-
straining the information capacity by a careful choice of embedding
dimensions that ensures each channel contains only one factor of
variation, such as AutoVC [17] and SpeechSplit [18]. However this
comes with a trade-off in the generated output quality, and does not
provide flexibility in choosing the embedding dimension for a signal
attribute of interest, whereas our method provides more freedom in
choosing the embedding dimensions.

Polyak et al. [19] used self-supervised learning to train multiple
encoders to obtain discrete representations of speech inputs, each
one capturing a different speech attribute. These representations
are resynthesized to high-quality speech, enabling very low-bitrate
speech transmission. This is only limited to speech characteristics
and relies on domain-specific encoders, whereas our codec can pro-
cess a broader audio domain. Yang et al. [20] demonstrated source
separation and neural coding in the latent space, an approach that is
only limited to signals that can be added together in the time domain.

Disentangled representations can be learned by partitioning fea-
ture vectors in the latent space and mixing the partitions while training
the model to produce realistic decoded outputs, thereby capturing
one factor of variation in each partition [21] or to synthesize new
samples that share attributes between different input samples [22]. A
related approach is to supply input data that differs in some attribute
and constrain different subspaces of the latent vectors to capture
those changes, as was shown in the vision domain with dataset batch-
ing [23] or targeted augmentations [24], or for the SPICE audio pitch
estimator [25]. Inspired by these mixing approaches, we present how
to separate speech signals from their environment, and demonstrate
disentanglement of speech from background noise or reverberation
in a way that enables fine-grained control over the output.IC
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Fig. 1. The architecture of our model. A) An input waveform is processed by the encoder to produce one embedding vector per frame. Each
partition is processed using a separate residual vector quantizer. The quantized embeddings are converted back into an audio waveform. B) The
embedding partitions can be individually set to zero before decoding, which removes the corresponding attribute from the output audio, e.g.,
the background noise. C) An audio waveform can be encoded and an embedding partition swapped out with that of a different waveform,
thereby replacing an audio attribute of the first waveform with that of the second.

2. METHODS

Our model is based on SoundStream [4], a streamable neural audio
codec with a vector-quantized autoencoder architecture. However,
unlike the baseline SoundStream model, we have the following addi-
tional requirements: We need to set the dimension allocated to each
embedding partition, and for compression we need a way of setting
the effective bitrate for each channel. The codec should allow for
streaming audio while producing structured embeddings in real time,
such that certain types of content can have their bitrate reduced or be
removed entirely on demand.

2.1. Model

Our model architecture is shown in Fig. 1A. Single-channel audio
waveforms x ∈ RT are processed by the encoder, which is a convolu-
tional network with blocks consisting of residual units and a strided
convolutional layer. All convolutions have causal padding to allow for
real-time streaming of the input waveforms. The encoder produces
embeddings z = enc(x) ∈ RF×D , where F is the number of frames,
and D is the number of features per frame, set by the number of
convolutional filters at the bottleneck. The number of frames F is
given by the number of waveform samples T divided by the product
of all convolution striding factors.

We apply residual vector quantization to each embedding parti-
tion separately. A residual vector quantizer [4] is a stack of vector
quantization layers, each of which replaces its input by a vector from
a learned discrete codebook and passes the residual error to the next
layer. The effective bitrate is given by R = RfNnq , where Rf is
the frame rate, N is the codebook size in bits, and nq is the number
of quantizer layers. Each embedding partition, a subset of the D total
dimensions, is processed by such a quantization module, allowing us
to set a separate bitrate for each partition, particularly when different
attributes change over different time scales. For a finite bitrate budget,
we can also prioritize speech content over other attributes like the
room characteristics.

The quantized embeddings are concatenated together along the
feature axis and fed into the decoder, which converts them into a
reconstructed audio waveform x̂ = dec(z) ∈ RT . The decoder
is very similar in structure to the encoder, where convolutions are
replaced by transposed convolutions [4].

2.2. Disentanglement scheme

Disentangling speech from its environment requires careful design
of the training objectives, in order to both achieve high-quality au-
dio transmission and create structured embeddings with no content
leakage between different partitions.

We apply an augmentation f(·, θθθ) to a clean speech waveform
xc to produce x = f(xc, θθθ). Here we consider parameters θθθ that
are used as additive signals to the clean speech x = xc + θθθ, or as
convolution kernels x(t) =

∫
θθθ(τ)xc(t−τ)dτ . The aim is to produce

embeddings where xc is encoded in a dedicated partition z(1), and θθθ is
encoded in a separate partition z(2), such that z = concat(z(1), z(2)).
Additionally, we require a good reconstruction quality of the audio
and speech signal of interest. Therefore, during each training iteration
we create three different types of augmented signals, which are used
sequentially as input to the training objective in Section 2.3:

(i) Reconstruct the augmented input audio x using the full embed-
ding vectors z.

(ii) Reconstruct the clean speech component xc from the aug-
mented input x. Here, the embeddings are multiplied by a
binary mask to set the second partition z(2) that encodes the
augmentation to zero (Fig. 1B).

(iii) Encode two different augmented input waveforms xA =
f(xc

A, θθθA) and xB = f(xc
B , θθθB), where θθθA and θθθB repre-

sent different augmentations. This produces embeddings zA
and zB , which are partitioned as

[
z(1)A , z(2)A

]
and

[
z(1)B , z(2)B

]
,

respectively. Then, the second partition of the embedding vec-
tors is swapped, and the new embedding vectors

[
z(1)A , z(2)B

]
are decoded to reconstruct a new version x̃A = f(xc

A, θθθB)
that inherits the attribute of interest from xB (Fig. 1C).

2.3. Training objectives

To train the model, we minimize a multi-scale spectral reconstruction
loss for each step [26, 27]:

Lrec(x, x′) =
11∑

log2 s=6

(∑
t

∥∥Ss
t (x)− Ss

t (x
′)
∥∥
1
+

√
s

2

∑
t

∥∥logSs
t (x)− logSs

t (x
′))
∥∥
2

)
,

(1)
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ViSQOL
Multichannel quantization

(6.3 kbps/channel)
Single channel

quantization (12 kbps) No quantization

Reconstruction 3.88± 0.03 3.84± 0.04 4.32± 0.03

Speech partition 3.16± 0.08 3.08± 0.08 3.06± 0.08

Noise partition 2.54± 0.05 2.55± 0.06 2.57± 0.05

Table 1. Audio quality after decoding the full embeddings and individual partitions as measured with ViSQOL, where the expected target audio
is used as a reference, that is, noisy speech, clean speech and noise, respectively. All three cases have identical training objectives and only
differ in the quantization method. The quantization imposes an information bottleneck in the compressed domain, which suppresses noise in the
speech partition and vice versa. Values are averaged over 250 noisy waveforms of 3 s duration. Uncertainties denote 95% confidence intervals.

where Ss
t (·) denotes the t-th frame of a 64-bin mel-spectrogram with

a window length of s and hop length of s/4. The L1 objective in
the first term encourages matching the highest-energy features of
the signal, while the L2 logarithmic term provides attention to the
quieter details. For each of the three training steps, we compute
this loss function between the reconstructed waveform x̂ and the
corresponding target waveform, i.e. Lrec(x, x̂) for training step (i),
Lrec(xc, x̂) for step (ii), and Lrec(x̃, x̂) for step (iii).

When relying only on the reconstruction losses (1), we find that
the output audio suffers from robotic artifacts. To alleviate these,
we use a set of discriminators operating on the audio waveforms at
multiple scales [4], and train them in an adversarial fashion to encour-
age the SoundStream model to produce more realistically sounding
audio. In contrast to previous work, we do not use discriminators
operating in the STFT domain, as we found they add no performance
benefit, and instead our discriminators operate on multiple scales on
the time-domain audio. In addition to minimizing the adversarial loss,
we also rely on a feature loss from the absolute differences of the
discriminator layer outputs between the original and reconstructed
audio [4]. However, we observed that simultaneous training of all
components often yields poor output quality and find better results by
first training the model on all three tasks using reconstruction losses
only, then freezing the parameters of the encoder and quantizer, and
finally training the decoder alongside the discriminators to improve
the output quality. The optimizers, learning rate and loss weights are
identical to those used for tranining SoundStream [4].

3. RESULTS

3.1. Separating speech from noise

We use speech waveforms from the LibriVox dataset [28], and syn-
thesize noisy speech waveforms by mixing these with noise from
the Freesound dataset [29], which was screened to remove speech
content and only keep clips with a CC0 license. Both the speech
and noise waveforms are normalized, then the noise is multiplied
by a random gain drawn from a normal distribution with mean of
−5 dB and standard deviation of 10 dB before being mixed with the
speech waveform. In the input pipeline, we supply pairs of wave-
forms (xA, xc

A) and (xB , xc
B), each with the noisy and clean version,

and where xA and xB differ in speech and background noise signals.
We encode each audio frame of 320 samples into a 256-

dimensional embedding vector, which is partitioned into two equal
halves, one to carry information about the speech and the other
about background noise. Each embedding channel is processed
with a dedicated residual vector quantizer, with nq = 14 layers of
log2N = 9 bits of depth each. Embedding vectors are produced
with a frame rate of Rf = 50Hz, leading to an effective bitrate per

channel of R = 6.3 kbps. We then train the model on the three
objectives detailed in Section 2.2 using waveforms xA and xB .

Table 1 shows the reconstruction quality of the model as mea-
sured with ViSQOL [30, 31], an objective quality metric that cor-
relates well with subjective evaluations. We show the scores for
the reconstruction of the full embeddings, each individual partition,
and the reconstructed waveform from mixed embeddings of two sep-
arate inputs. There, our trained model with separate quantization
of each channel is compared with two other models: One with a
global residual vector quantizer operating on all embeddings with
a bitrate of R = 12 kbps, and one where no vector quantization
is performed. The model with individually quantized channels per-
forms better on average than the one with a global quantization of the
embeddings. The model without quantization yields better quality
when reconstructing the noisy speech signal owing to the absence of
quantization noise, but it offers no signal compression, and the clean
speech reconstruction is similar to the other models.

When reconstructing clean speech from the first embedding parti-
tion, the background noise is efficiently removed without substantially
hurting speech intelligibility,1but broadband stationary noise in the
waveform is not fully suppressed, limiting the values of quantitative
metrics like ViSQOL. We observe that decoding the noise embed-
ding partition while setting the speech embeddings to zero leads to
a reconstruction of the noise component, albeit at lower quality as
this reconstruction was not an explicit training task. We also find that
multiplying a partition with a weight factor between 0 and 1 leads to
a reduction in volume of the corresponding audio content, a feature
that can be used for adjusting the target level of denoising.1

3.2. Separating speech from reverberation

Synthetic reverberated speech differs from speech with background
noise in that reverberation is not an additive signal, but rather the room
impulse response is convolved with the speech. Another difference
is that the information about the room impulse response typically
changes much more slowly than the underlying speech content, and
for the purpose of this work is assumed to be time-invariant.

We can use the same general framework to train a new codec
that separates speech from reverberation. Here we allocate 54 embed-
ding features to speech, which proved sufficient for this purpose. To
capture the difference in temporal variations speech and reverbera-
tion, we modify the encoder to include an additional convolutional
layer striding over multiple frames that outputs a second set of 10-
dimensional embedding vectors at a 10-times lower frame rate than
the speech embeddings, to capture the typical time scales of the room
impulse response. We quantize the reverberation partition with only

1Audio examples at https://google-research.github.io/
seanet/disentangling_soundstream/examples/

Authorized licensed use limited to: GOOGLE. Downloaded on September 14,2023 at 21:50:53 UTC from IEEE Xplore.  Restrictions apply. 



� ��
 ���
�$'��T60��%�

�

��


���

�$
��
��
&�
��
T 6

0�
�%
� �"�����!#'&

���	

�

��	
��
%�
�'
��
��%
�

μ������� %���σ����
�� %

� ��
 ���

�"����"'&#'&

μ�������
� %���σ������� %

� ��� ��
 ��� ��� �
�!#'&μ�T60��%�

�

���

��


���

���

�

�!
#'
& B
�T
60
��%
�

�"����"'&#'&%
��&�$�%)�##�!�

� ���� ��� ��� �
��(�$��#�$&�&�"!�)����&

�

���

��


���

���

�

��
��
&�(
��
T 6

0

� � �

Fig. 2. A) Benchmark of the T60 estimator and our model’s reconstruction fidelity. In the lower plots, the classified values are compared
with the true T60 values known from the augmentation, both for the model inputs and reconstructed outputs, where data points with a perfect
reproduction of the T60 value should lie on the diagonal dashed line. The upper plots show the residuals, the means of the error and their
standard deviations. B) T60 values of pairs of inputs after reconstruction by the model (blue circles) and with a swapped reverb embedding
partition (orange squares). Solid gray lines connect points that belong to the same pair of inputs. C) Demonstration of reverb tuning. 200
strongly reverberant waveforms (T60 > 400ms) are encoded, and the reverb partition is multiplied by a global weight factor before decoding.
The measured T60 values are normalized by the value at weight factor of 1 and then averaged. Error bars denote 95% confidence intervals.

nq = 4 layers of log2N = 9 bit depth, yielding an effective bitrate
of R = 180 bps. These “slow” embeddings allocated for reverbera-
tion are then upsampled by a factor of 10 and concatenated with the
“fast” speech embeddings along the feature axis.

We train on clean speech waveforms from the LibriVox dataset
that are each augmented with a time-invariant, synthetic room impulse
response, which represents a stationary speaker and receiver. The
room impulse responses have characteristic T60 times between 70ms
and 1.2 s with an average of 214ms and median of 272ms. In
the input pipeline, we provide pairs of waveforms (xA, xc

A) and
(xB , x̃B), where xc

A is the non-reverberant version of xA, and x̃B =
f(xc

B , θθθA) is the version of xB that has the same room impulse
response as xA. To make the task more explicit, xA is augmented
with strong reverberation levels (T60(xA) ≥ 400ms) and xB with
weaker reverberation (T60(xB) ≤ 250ms). We then train on the
three objectives detailed in Section 2.2.

We measure the reverberation characteristics of the waveforms
using a pretrained estimator of T60, the time reverberated sound takes
to decay by 60 dB. Its accuracy is shown in Fig. 2A. Input wave-
forms x are fed to the estimator, which yields estimated T60 values
that do not differ significantly from the ground-truth values used in
the augmentation. We also evaluate the reconstructed waveforms
x̂ generated by our model, and find a faithful reconstruction of the
reverberation characteristics except for very long reverberation times.

To verify the separation of reverberation from speech in the
embedding space, we input pairs of audio waveforms (xA, xB) to our
model to obtain reconstructed waveforms (x̂A, x̂B) and evaluate their
T60 values. We then take the encoded embeddings of both waveforms
and swap their reverberation embedding partitions before decoding
and estimate the T60 values of the new waveforms (x̃A, x̃B). Fig. 2B
shows the T60 values before and after this swapping operation, where
most pairs have their T60 values successfully swapped, indicating the
second partition includes all the information about the reverberation.

We further demonstrate the tunability of the decoded outputs
by encoding 200 strongly reverberated examples (T60 ≥ 400ms),
multiplying the partition encoding reverberation by a weight fac-
tor between 0 and 1 and estimating the decoded output’s T60 time
(Fig. 2C). We observe that the weight factor smoothly reduces T60 in

a predictable way, indicating that we can fine-tune the reverberation
of speech on demand.

4. CONCLUSION

In this work, we introduce a training scheme to separate speech
from background noise or the room reverberation in the embedding
space of a neural audio codec. By alternating between reconstructing
input audio, reconstructing only the speech component, and recon-
structing new synthetic audio by decoding different combinations of
embedding partitions, we achieve effective disentanglement of these
contents. We further show how the separation in embedding space
leads to a tunable output, for example, by removing the noise com-
ponent altogether, tuning out the room reverberation, or inheriting a
different room impulse response from a separate reference waveform.
In future studies, we will scale up this scheme to disentangle multiple
attributes at the same time and extend our approach to other factors
of variation like pitch and speaker identity.

5. ACKNOWLEDGMENTS

The authors thank Olivier Bachem, Hannah Muckenhirn, John Her-
shey, Ben Laurie, Dominik Roblek, Beat Gfeller, Yunpeng Li for
helpful discussions, and Dan Ellis and Dick Lyon for technical dis-
cussions and helpful feedback on the manuscript.

6. REFERENCES

[1] S. Morishima, H. Harashima, and Y. Katayama, “Speech coding
based on a multi-layer neural network,” in IEEE International
Conference on Communications, 1990, vol. 2, pp. 429–433.

[2] Srihari Kankanahalli, “End-To-end optimized speech coding
with deep neural networks,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2018,
pp. 2521–2525.
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